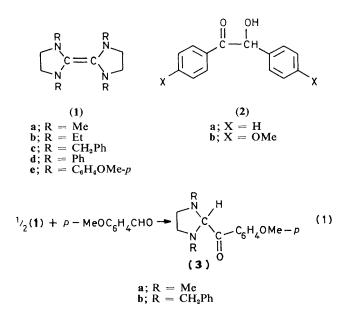
A New Class of Benzoin Condensation Catalyst, the Bi-(1,3-dialkylimidazolidin-2-ylidenes)

Michael F. Lappert and Robin K. Maskell

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

An electron-rich olefin $[=CN(R)CH_2CH_2NR]_2$ (R = Me, Et, or CH₂Ph) is an effective catalyst (at < 1 molar % concentration) for the benzoin condensation in aprotic non-polar media; the appropriate 2-aroylimidazolidine is obtained at high dilution under stoicheiometric conditions (olefin + 2ArCHO).


The formation of α -hydroxyketones, an important class of compound with an extensive organic chemistry, *via* the benzoin or a related condensation, has received much attention.¹ The original catalyst was KCN in aqueous alcohol, although more recently other sources of $CN^-(e.g., {}^2[NR_4][CN])$, or a thiazolium salt [including thiamine (vitamin B₁) pyrophosphate],³ in water or benzene (if a phase-transfer catalyst, such as *N*-laurylthiazolium bromide was used²) or a dipolar aprotic solvent, *e.g.*, Me₂SO-HCONMe₂,⁴ have proved effective for this key carbon–carbon bond-forming reaction.

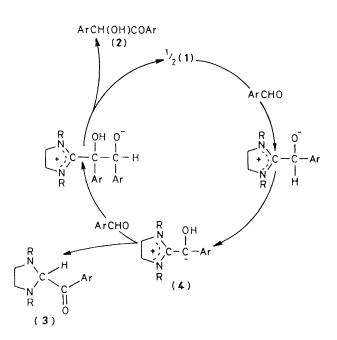
We now find that electron-rich olefins, such as (1a-c), bearing primary alkyl substituents at the nitrogen atoms, are examples of a new class of highly active benzoin condensation catalyst, as illustrated in Table 1 for the conversion of 2ArCHO into ArCH(OH)COAr (2). A noteworthy feature is the use of an aprotic non-polar reaction medium, and this combination of catalyst and solvent may prove to be useful for a wider range of C-C couplings.

In a typical experiment, a freshly prepared solution of bi-(1,3-dimethylimidazolidin-2-ylidene) (1a) (0.380 g, 1 mol %) and benzaldehyde (20.9 g) was placed in a pre-heated oil-bath at 60 °C under an inert atmosphere. The initial red colour of the solution was almost immediately discharged and within 1 min the reaction mixture had solidified. The product, benzoin (2a), was washed with ether and recrystallised from ethanol (17.6 g, 84%).

The catalytic activities of the electron-rich olefins (1a-c) compare very favourably with those claimed previously for other catalysts,¹⁻⁴ even though no attempts have yet been made to achieve optimisation.

A limitation, however, for reactions involving aldehydes containing an α -hydrogen atom may be the basic character of the olefins (1). For example, we observe that acetaldehyde

affords aldol at ambient temperature in the presence of a trace of the olefin (1c), whereas by using the thiazolium salt


PhCH₂ \dot{N}^+ =CHSC (CH₂CH₂OH)= \dot{C} Me Cl⁻ a good yield of the acyloin was obtained at 80 °C under pressure (in the presence of triethylamine).³

The reaction conditions, reactant stoicheiometry, and the nature of the substituents in either the aromatic aldehyde or the electron-rich olefin, have an important role in determining the nature and distribution of the product(s). Dilute solutions and appropriate reaction stoicheiometries afford 2-aroylimidazolidines (3) in good yield, equation (1). Indeed reaction (1) has a precedent: Wanzlick and Kleiner made the remarkable discovery that a tetra-aryl-olefin, such as (1d), is converted

Table 1. The benzoin condensation catalysed by some electronrich olefins (1a-1c)

Catalyst (mol %)		Conditions $T/^{\circ}C$; t/min		Yield of benzoin (%)		
(1 a)	(1.0)	60;	1	(2 a)	84ª	
(1a)	(0.9)	80 ^b ;	30	(2a)	76 ^a	
(1b)	(0.5)	80 ^b ;	30	(2a)	75ª	
(1c)	(3.3)	130-140); 30	(2a)	68ª	
(1a)	(2.7)	60-90;	30	(2b)	71°	
(1a)	(1.0)	100;	30	(2 b)	58°	
(1c)	(1.0)	100;	30	(2b)	58°	

^a Isolated yield. ^b In benzene. ^c Calculated from quantitative ¹H n.m.r. studies.

Scheme 1. A catalytic cycle for the electron-rich olefin-catalysed benzoin condensation.

into the 1,3-diaryl-2-aroylimidazolidine by treatment with an appropriate aldehyde such as PhCHO or furfural.⁵ Moreover they noted that using (1e) a trace of benzoin or furoin was a byproduct.

The catalytic activity of the olefin (1) is crucially dependent on the nature of the substituent R (Me \sim Et > CH₂Ph >>> $C_6H_4OMe_p > Ph$). This is consistent with the catalytic cycle shown in Scheme 1, in which the 2-aroylimidazolidine (3) results from ketonisation of the enol (4). Stabilisation of (4) by electron-donating substituents at nitrogen suppresses the conversion of (4) into (3). Compound (4) belongs to a family of masked acyl carbanions $Ar\overline{C}(X)OH$, including X = CN or a thiazolium moiety; the reaction of this species with ArCHO is rate-limiting for the formation of the C-C coupled product (2).

We thank S.E.R.C. and Dow Corning, Ltd. for the award of a CASE studentship to R.K.M.

Received, 4th March 1982; Com. 243

References

- 1 Cf., T. Laird, in 'Comprehensive Organic Chemistry,' Vol. 1, 1979, p. 1142 et seq.
- 2 D. A. White and M. M. Baizer, J. Chem. Soc., Perkin Trans. 1, 1973, 2230.
- 3 H. Stetter, R. Y. Rämsch, and H. Kuhlmann, Synthesis, 1976, 733.
- 4 G. H. Hakimelahi, C. B. Boyce, and H. S. Kasmai, Helv. Chim. Acta., 1977, **60**, 342. 5 H.-W. Wanzlick and H.-J. Kleiner, Chem. Ber., 1963, **96**, 3024.